

الامتحان الوطني الموحد للبكالوريا الدورة العادية 2019 - الموضوع -

+> NNX++ | HPYOPO + |

*** * ***

****** NS45

المركز الوطني للتقويم والامتحانات والتوجيه

4	مدة الانجاز	علوم المهندس	
8	المعامل	شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الميكانيكية	الشعبة أو المسلك

Constitution de l'épreuve

Volet 1 : présentation de l'épreuve et grille de notation : page 1/17

Volet 2 : présentation du support : pages 2/17 et 3/17 Volet 3 : substrat du sujet : pages de 4/17 à 12/17

o Situations d'évaluation (SEV 1, SEV 2 et SEV 3) : page 4/17

Documents réponses (*DREP*)
 : pages de 5/17 à 12/17 (à rendre par le candidat)

Volet 4 : documents ressources (**DRES**) : pages de 13/17 à 17/17

Volet 1 : Présentation de l'épreuve et grille de notation

Système à étudier : Transstockeur ;

Durée de l'épreuve : 4 heures ;

Coefficient : 8;

Moyen de calcul autorisé : Calculatrice non programmable ;

Documents autorisés : aucun ;

Les candidats rédigeront leurs réponses sur les documents réponses (DREP) prévus à cet effet.

GRILLE DE NOTATION

SITUATION D	P'EVALUATION 1	SITUATION D'EV	ALUATION 2	SITUATION D'E	VALUATION 3
Tâc	the 1.1	Tâche 2.1		Tâche 3.1	
а	1 pt	a	1 pt	a	1,5 pt
b	3 pts	b	1 pt	b	1 pt
Tâc	the 1.2	С	1,75 pt	С	2 pts
а	1,5 pt	d	1 pt	Tâche	3.2
b	1 pt	е	1 pt	а	2,5 pts
С	1,5 pt	f	1,5 pt	b	8 pts
d	1,5 pt	Tâche	2.2	С	5,5 pts
Tâch	ne 1.3	а	1 pt	d	6 pts
а	3 pts	b	1,5 pt	Tâche	2 3.3
b	3 pts	С	2 pts	а	4 pts
		d	1 pt	b	2 pts
		Tâche	2.3	Tâche	3.4
		a	1,5 pt	а	1,5 pt
		b	2 pts	b	0,5 pt
		С	1,75 pt	С	1,5 pt
		d	1,5 pt	Tâche	3.5
		е	1pt	а	0,25 pt
				b	1,75 pt
				С	3 pts
				d	2 pts
				e	0,5 pt
				f	0,5 pt
Total SEV1	15,5 pts	Total SEV2	20,5 pts	Total SEV3	44 pts
		<u> </u>	<u> </u>	TOTAL	: /80 Pc

سفحة	الد
17	2

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2019 – الموضوع - مادة: علوم المهندس – شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

Volet 2 : Présentation du support

Dans le but d'améliorer la gestion de stock des boites dans les sociétés de distribution, une entreprise de fabrication de matériels de manutention automatisés a chargé une équipe pour mener une étude afin de proposer un système capable de répondre à ce besoin et ceci dans le but :

- o d'exploiter le volume de stockage disponible en hauteur et réduire ainsi son coût ;
- o de s'équiper d'un système automatisé permettant le stockage/déstockage des boites pour :
 - √ apporter confort et sécurité aux utilisateurs ;
 - ✓ réduire les déplacements, la fatigue physique, les accidents, ...

Après étude et recherche de solutions constructives, l'équipe a proposé le système appelé transstockeur qui permet de stocker et déstocker des boites dans des casiers comme schématisé sur la **figure 1**.

Ce système automatisé sera constitué principalement de trois blocs : bloc **X**, bloc **Y** et bloc **Z** représentés sur le schéma de principe suivant :

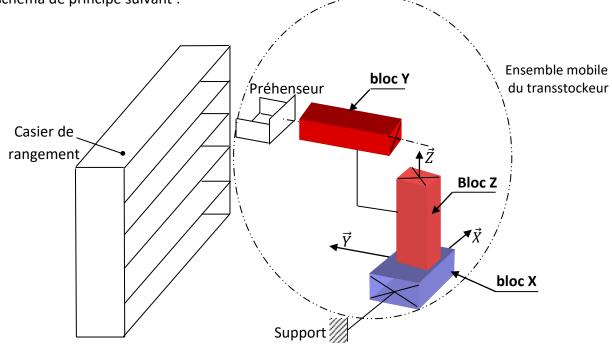
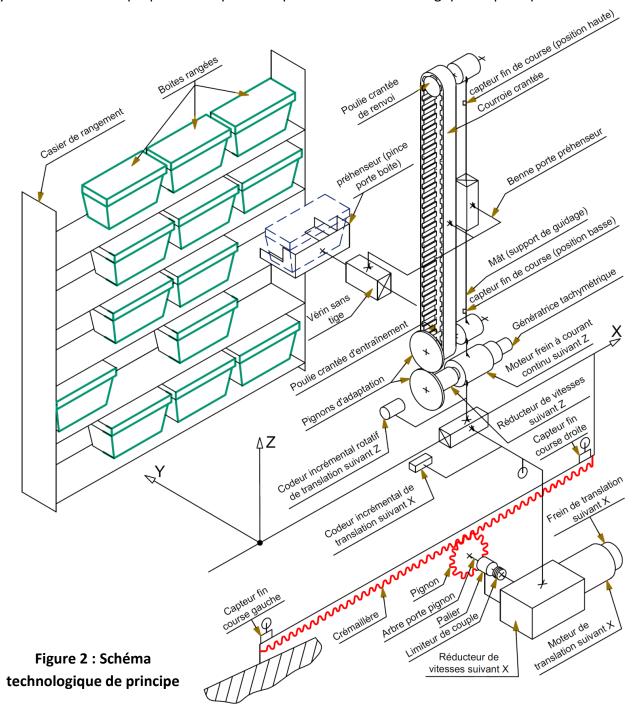


Figure 1 : schéma du principe de fonctionnement des trois principaux blocs du transstockeur

Les trois blocs qui forment l'ensemble mobile du système transstockeur (voir le schéma technologique de principe **figure 2** page 3/17) sont :

- o le bloc **X** constitué principalement par les éléments suivants : moteur-frein de translation suivant **X**, réducteur de vitesses suivant **X** et système pignon/crémaillère ;
- o le bloc Y constitué principalement par les éléments suivants : préhenseur, vérin sans tige ;
- o le bloc **Z** constitué principalement des éléments suivants : moteur frein à courant continu suivant **Z**, réducteur de vitesses suivant **Z**, pignons d'adaptation et système poulies-courroie crantée.


<u>Remarque</u>: Le système utilise les énergies électrique et pneumatique et géré par un automate programmable industriel.

ىفحة	الص
47	3

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2019 – الموضوع - مادة: علوم المهندس — شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

Principe de fonctionnement du transstockeur:

Le système automatisé proposé est représenté par le schéma technologique de principe suivant :

Pour positionner le préhenseur du transstockeur à la position désirée, l'ensemble mobile (voir figure 1 page 2/17) doit se déplacer **simultanément** suivant l'axe horizontal **X** et suivant l'axe vertical **Z**. Ensuite, un autre déplacement suivant **Y** est nécessaire pour atteindre le casier de rangement afin de stocker/déstocker la boîte.

Les objectifs de votre étude consistent à :

- 1- Appréhender et analyser le fonctionnement du transstockeur ;
- 2- Étudier le comportement mécanique de quelques éléments du transstockeur ;
- 3- Choisir le moteur du bloc X;
- 4- Préparer partiellement le dossier de fabrication de l'une des pièces du mécanisme assurant le déplacement de l'ensemble mobile suivant l'axe **X**.

صفحة	12
47	4

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2019 – الموضوع - مادة: علوم المهندس – شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

Volet 3 : Substrat du sujet

Situation					
d'évaluation					
1					

- Analyse fonctionnelle et technique du transstockeur ;
- Identification des éléments des chaînes d'énergie et d'information de son mécanisme de déplacement du bloc **Z**, suivant l'axe **Z**, et étude partielle de son asservissement en position.

15,5 points

<u>Tâche 1.1</u>: Analyse fonctionnelle du transstockeur :

Répondre aux questions du **DREP** page 5/17.

<u>Tâche 1.2</u>: Analyse technique du transstockeur :

Répondre aux questions des DREP pages 5/17 et 6/17.

<u>Tâche 1.3</u>: Identification des éléments de la chaîne fonctionnelle du mécanisme de déplacement du bloc **Z** suivant l'axe **Z** et étude partielle de son asservissement :

Répondre aux questions des DREP pages 6/17 et 7/17.

Situation d'évaluation 2

- Étude dynamique de l'ensemble mobile suivant l'axe X pour la détermination des caractéristiques géométriques du pignon 41;
- Validation du choix du moteur électrique de translation suivant l'axe **X** ;
- Étude de la sollicitation en torsion de l'arbre porte pignon **40**.

20,5 points

<u>Tâche 2.1</u>: Étude dynamique de l'ensemble mobile suivant l'axe *X* pour la détermination de l'effort tangentiel appliqué par la crémaillère sur le pignon **41** et calcul des caractéristiques géométriques de ce dernier.

Répondre aux questions du DREP page 7/17.

- <u>Tâche 2.2</u>: Validation du choix du moteur électrique de translation suivant l'axe *X* du bloc *X*. Répondre aux questions du **DREP** page 8/17.
- <u>Tâche 2.3</u>: Détermination du diamètre de l'arbre porte pignon 40 et choix de son matériau. Répondre aux questions du **DREP** page 8/17.

d'evaluation	Étude de la production : analyse du dessin de définition du pignon 41 , étude et élaboration de quelques éléments de son dossier de fabrication.	44 points
--------------	---	--------------

<u>Tâche 3.1</u>: Analyse du dessin de définition.

Répondre aux questions du **DREP** page 9/17.

<u>Tâche 3.2</u>: Etude partielle de la **phase 20**.

Répondre aux questions des **DREP** pages 9/17 et 10/17.

Tâche 3.3 : Etude de la phase de taillage de la denture du pignon 41 (phase 50).

Répondre aux questions du **DREP** page 10/17.

Tâche 3.4 : Étude de la phase de traitement thermique.

Répondre aux questions du **DREP** page 11/17.

<u>Tâche 3.5</u> : Conception du profil à réaliser de la **phase 20** par **FeaturCam**.

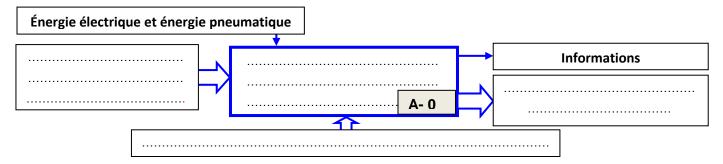
Répondre aux questions des **DREP** pages 11/17 et 12/17.

صفحة	الد	
	5	NS45

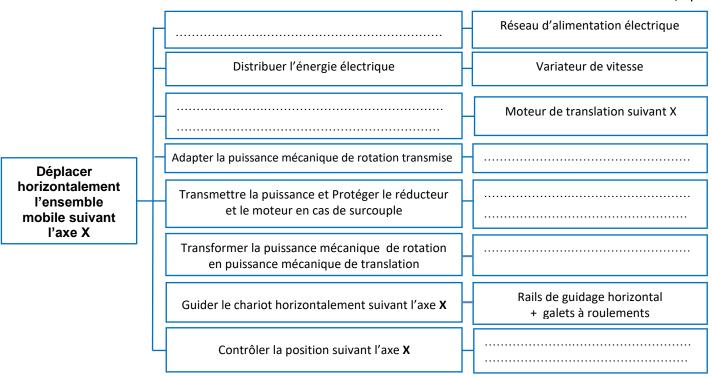
17

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2019 - الموضوع - مادة: علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

Documents Réponses (DREP)

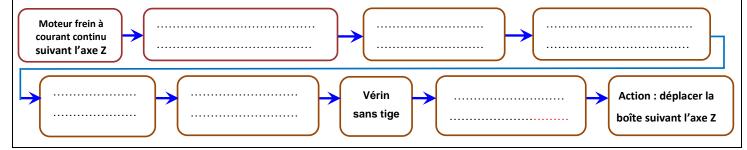

Situation d'évaluation 1

Tâche 1.1: Analyse fonctionnelle du transstockeur:


En se référant à la présentation du support et au principe de fonctionnement du système « *transstockeur* » pages 2/17, 3/17 et **DRES** pages 13/17 et 14/17:

a. Compléter l'actigramme A-0 du transstockeur :

/1pt


b. Compléter le diagramme FAST relatif à la fonction "Déplacer horizontalement l'ensemble mobile suivant l'axe X" : /3pts

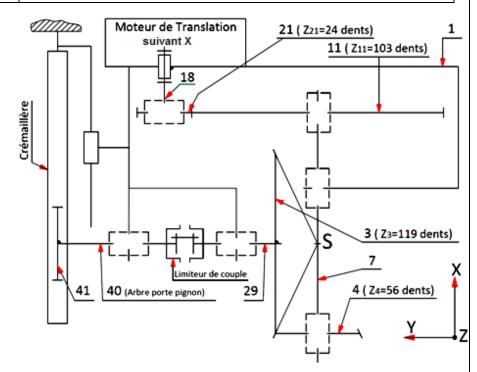
Tâche 1.2 : Analyse technique du transstockeur :

a. Compléter, en se référant au schéma technologique de principe page 3/17, le schéma synoptique suivant par les noms des composants de la chaîne de transmission de mouvement suivant l'axe **Z**:

/1,5pt

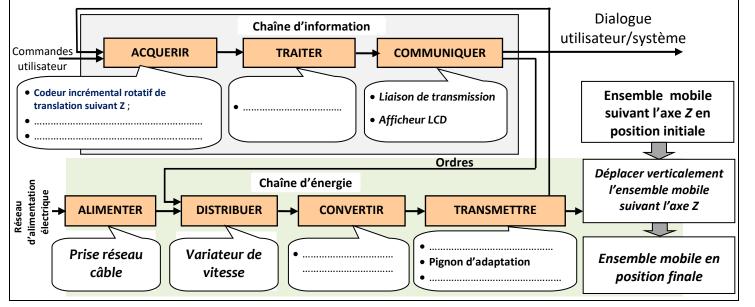
الصفحة	
6	

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2019 - الموضوع - مادة: علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية


En se référant au dessin d'ensemble et à sa nomenclature **DRES** pages 13/17 et 14/17, on vous demande de :

- **b.** Citer **les deux** conditions d'engrènement entre les roues de l'engrenage conique à dentures droites (pignon conique **4** et roue dentée conique **3**).
 - -
- c. Compléter le tableau suivant :

/1,5pt


Repère de l'élément	Nom de l'élément	Fonction de l'élément
13		
26		
43		

d. Compléter le schéma cinématique minimal du mécanisme d'entraînement de l'ensemble mobile suivant l'axe X : /1,5pt

Tâche 1.3 : Chaîne fonctionnelle et asservissement :

a. Compléter la chaîne fonctionnelle relative à la fonction "Déplacer verticalement l'ensemble mobile suivant l'axe Z" (voir figure 2 page 3/17 et DRES page 15/17) : /3pts

الصفحة 7 17	NS4	5	وع جيات الميكانيكية	دية 2019 – الموض ملك العلوم والتكنولو	الدورة العا جيات مس	طني الموحد للبكالوريا - - شعبة العلوم والتكنولو	متحان الو، هندس _	الا، - مادة: علوم الم	
b. Er	n se ré	fér	ant au schéma b	oc du système a	sservi, D	RES page 15/17 :			/3pts
	b.1.	D	onner le rôle du	comparateur :					
	b.2.	D	éterminer la fonc	tion de transfert	en bou	cle ouverte F.T.B.O	:		
	b.3.	D	éterminer la fonc	tion de transfert	en bou	cle fermée F.T.B.F =	θs/θe :		
c									
			aluation 2 s calculs, considé						
En uti créma a. Éc	lisant illère crire l'	les sur éq	données des DF le pignon 41 et c	RES pages 15/17 alculer les caract e de l'équilibre d	et 16/1 téristiqu	ques caractéristique 7, déterminer l'effo es géométriques de que appliqué à l'ens	ort tang e ce deri	entiel Ft appliqu nier. Pour ce faire	é par la e :
l'e c. Er	effort i	tan efér	gentiel Ft :	ne de modélisatio	on de la	ique sur l'axe X et vitesse de l'ensembrectuant les applicat	ole mob	ile, compléter le	/1pt tableau
CI-	-uessu	us					T	•	/1,75pt
			Phas Accélé		Vit	Phase 12 esse constante		Phase 23 Décélération	
			$\gamma = 0.7$					$\gamma = -0.7 \text{ m/s}^2$	
-	ession érale)	Ft =		Ft =		Ft =		
	ication		Ft =		Ft =		Ft =		
d. Came. Cadéf. Co	alculer éplace	n n le r l'(diamètre primit	e droite du pigno if d (en mm) du horizontalemen pte des valeurs	pignon t suivan	le l'expression $m \ge$ prenant Ft =2551 N 41 si sa fréquence t l'axe X à une vitess es auparavant, le tique) :	de rota	t Rp=165 N/mm tion N=159 tr/n re V=0,7 m/s .	2: /1pt nin pour /1pt
Modu	ule	Dia	ımètre primitif	Diamètre de	tête	Diamètre de pi	ed	Largeur b = K.m	(K=10)
3 m			84 mm	d _a =		d _f =		b =	
ااا د			07 111111	d _a =		d _f =		b =	

ىفحة	الص
	8
17	

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2019 - الموضوع - مادة: علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

Tâche 2.2 : Validation du choix du	moteur de translation suivant l'axe	e X du bloc X (DRES page 16/17).	

		ce utile Pu (en watt) ca		bbile suivant l'axe X : /1
b	rotation N ₁₈ (en tr		$= \frac{N_{29}}{N_{18}} \text{ du réducteur de vitesse et}$ eur sachant que $N_{29} = N_{40} = 159$ ès la virgule :	
	Calculer le rendeme de translation suiva		uire la puissance mécanique Pm (en kW) du moteur électriq /2p
 1.	Choisir, en se référa	nt au DRES page 16/17	7, le type du moteur qui convient	······································
	Type du moteur	Puissance Pm (en kW)	fréquence de rotation (en tr/min)	Couple (en N.m)
 		_	gidité à la torsion, le diamètre mir prendre M t= 110 N.m :	nimal d_{min} (en mm) de l'arb /2p
	•	compte des concentra sion. Prendre d _{min} = 36 i	ntions de contraintes, la contraintemm :	te tangentielle maximale ζ, /1,75
	(en N/mm²) de tors	tance élastique au glis	·	/1,75

فحة	الص
	9
47	

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2019 – الموضوع - مادة: علوم المهندس – شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

Situation d	l'évaluation 3			
<i>Tâche 3.1 :</i>	Analyse du dessin	de définition (se réfe	érer au DRES page 17/17)	
a. Interpré	ter et expliquer à l'a	aide d'un schéma la s	spécification suivante :	/1,5pt
	/			Schéma explicatif
D3	0,05			
b. Complét	ter le tableau ci-c	dessous en identifia	 ant les spécifications dimensions	onnelle et géométrique
-	isant la surface D4			/1pt
	Spécificatio	ns dimensionnelles	Spécification géométrique	
c. Identifie	er et donner la signif	fication de la nuance	du matériau du pignon 41:	/2pts
• • • • • • • • • • • • • • • • • • • •				
Les surfaces	Nom de l'opération	Nom de l'outil	Mode de génération (d'enveloppe ou de forme	Nom de la machine
F1				
D2				
D3				
b. Etude pa	artielle de la phase	20 :	/8pts	
b.1. Su	r le croquis de la ph	nase 20 ci-contre :		
- Indi	quer les surfaces us	sinées en trait fort ;		
	•		es de mise en position ;	
- Met	•	nboles technologique	es de mise en position ;	
- Met - Des	ttre en place les syn siner les outils en p	nboles technologique		
- Met - Des - Inst	ttre en place les syn siner les outils en p aller les cotes fabrio	nboles technologique osition de travail ; quées (Cf i) sans les c		
- Met - Des - Inst	ttre en place les syn siner les outils en p aller les cotes fabrio	nboles technologique osition de travail ; quées (Cf i) sans les c	chiffrer ;	
- Met - Des - Inst b.2. Do	ttre en place les syn siner les outils en p aller les cotes fabrio onner le type de por	nboles technologique osition de travail ; quées (Cf i) sans les c	chiffrer ; our réaliser cette phase :	

الصفحة 10 NS45 17	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2019 – الموضوع - مادة: علوم المهندس – شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية	
c. Etude de la	a géométrie de l'outil en main permettant la réalisation de la surface F1 : /5	5,5pts
c1. Préciser	r l'orientation de l'arête de l'outil ci-contre :	
c2. Complé indiquant	ter le croquis de l'outil en main ci-contre en t :	O
✓ Les pla	uvement d'avance relatif à cette opération (Mf); ans du référentiel en main (Pr , Ps , Pf , Pn , Po); gles de face orthogonaux (α_o , β_o , γ_o);	
	e de direction d'arête K_r et l'angle d'inclinaison λs .	>
	nombre de pièces « <i>np</i> » à usiner avec un même outil lors de l'opération d'ébauche de 17/17. Prendre trois chiffres après la virgule pour les applications numériques.	le F1 , /6pts
d.1. Calcule	er le temps de coupe tc (en <i>min</i>) relatif à l'usinage de F1 en ébauche :	
d.2. Déterr	miner la durée de vie de l'outil T (en <i>min</i>) :	
d.3. Calcule	er le nombre de pièces « np » à usiner en prenant tc = 1,108 <i>min</i> :	
Tâche3.3 : Étu	ude de la phase de taillage de la denture du pignon 41 (phase 50).	
A partir du cr	la denture en série est réalisé sur la machine spéciale de taillage « <i>FELLOWS</i> ». roquis de phase 50 , compléter le dessin partiel du montage d'usinage relatif au taillage gnon 41 , en matérialisant :	de la
•		/4pts /2pts
	Suppo	_

Dessin partiel du montage d'usinage

Croquis de phase 50

Eléments de serrage

فحة	الص
	11
17	

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2019 – الموضوع - مادة: علوم المهندس – شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

Tâche 3.4 : Étude de la phase de traitement thermique.

Le **pignon 41** (en **C40**) sera sollicité au frottement lors de son fonctionnement, ce qui nécessite une amélioration de ses caractéristiques mécaniques par une trempe. La dureté recherchée est de **420 Hv**.

a. Compléter le tableau ci-contre en précisant l'influence de la trempe sur les caractéristiques mécaniques mentionnées (répondre par : augmente ou diminue) : /1,5pt

	La dureté	La résilience	L'allongement %
Influence			

b. Cocher le type d'acier du pignon 41 :

/0,5pt

Acier hypoeutéctoïde	
----------------------	--

Acier hypereutécoïde

c. Compléter le tableau ci-dessous en précisant le nom de l'essai de dureté utilisé pour évaluer la dureté recherchée (420 Hv), et le type de pénétrateur : /1,5pt

Nom de l'essai de dureté	Type de pénétrateur	

Tâche 3.5 : Conception du profil à réaliser de la phase 20 par FeatureCam.

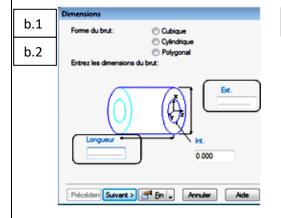
En vue d'améliorer davantage la productivité des pièces fabriquées, on décide de réaliser le **pignon 41** sur un tour à commande numérique deux axes. Le programme *CN* du profil à réaliser est édité par le logiciel de

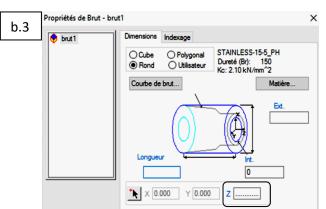
F.A.O (FeatureCam).

A l'aide du logiciel *FeatureCam* et en se référant au **DRES** page 17/17, on vous demande d'établir les étapes à suivre pour concevoir le profil à réaliser de **la phase 20** :

- **a.** Entourer, sur la fenêtre ci-contre, le choix du type de fichier pièce à créer pour un nouveau document. /0,25pt
- **b.** Compléter les fenêtres ci-dessous, relatives aux propriétés de brut, en : /1,75pt
- Assistant de Nouveau Document

 Quel type de fichier pièce voulez vous créer?


 Toumage/Fraisage


 Fraisage

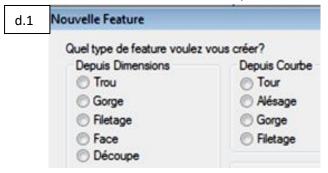
 Electro-érosion à fil

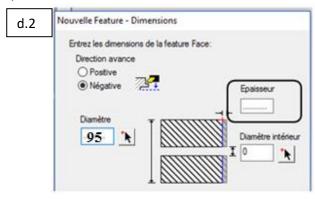
 Fixations Multiples

- **b.1.** Cochant la forme du brut choisi ;
- **b.2.** Indiquant les dimensions du brut ;
- **b.3.** Spécifiant la dimension du décalage de l'origine programme de la face brute, sachant que la profondeur de passe est de **a = 2 mm**.

فحة	الص
	12
17	

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2019 – الموضوع - مادة: علوم المهندس – شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

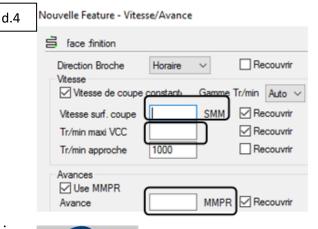

c. Compléter le tableau des coordonnées des points du profil finition (points 1 à 6) et préciser l'étape du logiciel pour tracer ce profil :


c1. Tableau des coordonnées :

	1	2	3	4	5	6
X (Ø)	95					
Z						-38.5

c2. Etape :....

- **d.** Sur les masques ci-dessous relatives à l'opération de dressage de **F1, DRES** page 17/17 : /2pts
 - d.1. Entourer le type de feature à créer ;
 - **d.2.** Indiquer la dimension de la feature de dressage ;
 - d.3. Cocher les stratégies à utiliser pour cette feature ;
 - d.4. Entrer les conditions de coupe relatives à cette opération.


d.3 Nouvelle Feature - Stratégies

Quelles stratégies utiliser pour cette feature de Face?

Opérations

Ebauche

Finition

e. Donner le nom de l'étape à valider pour simuler l'usinage :

/0,5pt

Étape :....


f. Donner le nom de l'étape suivante à valider et entourer les icônes pour afficher et enregistrer le programme du profil conçu : /0,5pt

Étape:....

Réaffecter les outils à de nouveaux pots

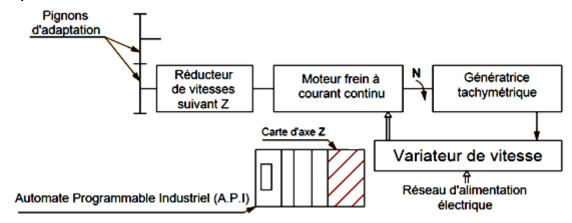
計 1 ₩ 2 Code CN
N10 T1/01/M6
N15 M12
N20 G38 S4500
N25 G37 S557 M4
N30 G6 N2 3 9402 20.005
N35 M8
N45 G1 ×0.0787 20.005 F0.0315
N45 G1 ×0.0787 20.0984 F0.0315
N45 G1 ×0.0787 20.0984 F0.0315
N55 G6 G1 ×0.0434 20.1161 F0.0157
N55 G6 N20.0434 20.1161 F0.0157
N55 G6 N20.0784 70.0184
N55 G6 N20.0787 20.0184
N75 G6 N20.0787 20.0787 20.039
N85 G1 ×0.1184 20.0985 F0.0039

<u>الصفحة</u> 14 17

NS45

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2019 - الموضوع - مادة: علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكاتيكية

• Nomenclature du mécanisme de déplacement de l'ensemble mobile suivant l'axe X.


Rep	Nb	Désignation	Matière	Observation
1	1	Carter	EN-GJL-150	
2	4	Vis à tête cylindrique à six pans creux ISO 4762 – M10 x 50	EN 0 11 450	NF NE ISO 4762
3	1	Roue dentée conique : Z ₃ = 119 dents		Dents Trempées
	1	Pignon conique : Z ₄ = 56 dents		Dents Trempées
5 4	1	Entretoise		Donto Trompére
6	1	Clavette forme A, 10 x 8 x 30	C 35	NF E 22 -177
7	1	Arbre intermédiaire	0.05	NE E 00 477
8	1	Couvercle	EN-GJL-150	
9	4	Rondelle Grower	EN 0 " 150	
10	1	Couvercle	EN-GJL-150	
11	1	Roue dentée : Z ₁₁ = 103 dents	EN 0 !! 450	Dents Trempées
12	2	Cales de réglage de jeu	EN-GJL-150	D
13	2	Color to Color to Co	EN 0 11 450	
14	1	Couvercle	EN-GJL-150	
15	1	Clavette forme A, 10 x 8 x 30	C 35	NF E 22 -177
16	4	Vis à tête cylindrique à six pans creux ISO 4762 – M6 x 20	0.05	NF NE ISO 4762
17	1	Clavette forme A, 10 x 8 x 25	C 35	NF E 22 -177
18	1	Arbre moteur	0.05	NE E 00 477
19	1	Support moteur		
20	4	Vis à tête cylindrique à six pans creux ISO 4762 – M10 x 40		NF NE ISO 4762
21	1	Pignon : Z ₂₁ = 24 dents		NENE (SO)
22	1	Joint plat		
23	1	Boitier		
24	1	Clavette forme A, 10 x 8 x 24	C 35	NF E 22 -177
25	1	Couvercle	EN-GJL-150	NE 5 00 455
26	3		=\\ 0 \\ \ 4=0	
27	1	Ecrou à encoches type KM- M27		ISO 2982
28	2	Roulement à rouleaux coniques		100 0000
29	1	Arbre de sortie du réducteur		
30	2	Clavette forme A, 10 x 8 x 22	C 35	NF E 22 -177
31	4	Vis à tête hexagonale ISO 4014 – M12 x 50_ 8-8	0.05	NE 5 00 455
32	16	Rondelles belleville (rondelles ressorts coniques)	EN-GJL-150	
33	4	Ecrou hexagonal ISO 4032 – M12- 08	EN 0 11 450	
34	1	Couvercle		
35	1	Entretoise		
36	2	Roulement à une rangée de billes à contact radial		
37	4	Boulon		
38	1	Couvercle		
39	4	Vis à tête cylindrique à six pans creux ISO 4762 – M6 x 16	25 Cr Mo 4	Traité
40	1	Arbre porte pignon	05.0.14.4	T - 11
41	1	Pignon (denture droite)		
42	1	Ecrou à encoches type KM- M40		ISO 2982
43	1		S 235	100 0000
44	1	Moyeu central	0.005	
45	1	Plateau gauche		
46	1	Garniture de friction		
	.	Plateau droit		

<u>الصفحة</u> 15 17

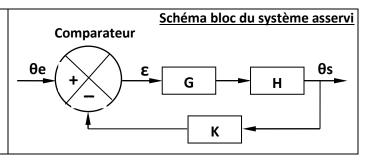
NS45

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2019 – الموضوع - مادة: علوم المهندس – شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

Données pour la tâche 1.3

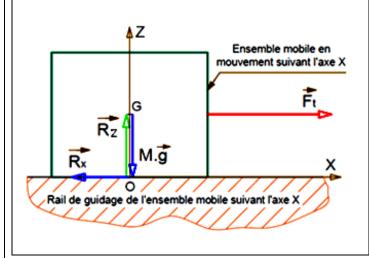
Asservissement du déplacement du bloc Z suivant l'axe Z

Le déplacement du bloc **Z** suivant l'axe **Z** est obtenu grâce à un moteur frein à courant continu piloté par un variateur de vitesse électronique et un automate programmable industriel. La carte de commande de l'axe **Z**, installée sur l'automate, est une carte d'axe qui est capable de comparer en permanence la position du bloc **Z** par rapport à la consigne contenue dans son programme. En fonction de l'écart constaté, le système agit de telle façon à maintenir la position désirée, conformément à la consigne de commande.

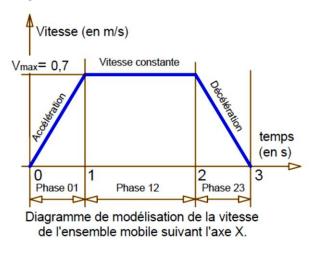

6e: Consigne d'entrée c'est la position désirée du préhenseur.

θs : position réelle du moteur à courant continu.

H: gain du Correcteur (Amplificateur de puissance).


G : gain du système (Ensemble : variateur de vitesse + motoréducteur).

K : gain du capteur de position (rapport de prélèvement de la tension de sortie).

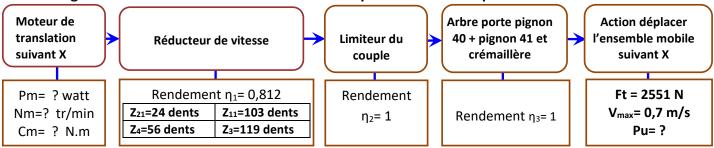


Données pour la tâche 2.1

L'ensemble des éléments du système en mouvement de translation suivant **X** par rapport à la glissière est modélisé par le schéma suivant :

Le cycle de fonctionnement du système en mouvement de déplacement suivant **X** est représenté par le diagramme suivant :

Les données : (voir la suite des données page suivante)


- La masse totale de l'ensemble mobile en déplacement horizontal suivant l'axe X est M= 1000 Kg;
- L'accélération de la pesanteur g= 10 m/s²;
- L'accélération maximale suivant l'axe X est γ=0,7 m/s²;

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2019 – الموضوع - مادة: علوم المهندس – شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

- > Le coefficient de frottement dynamique entre le rail de guidage et l'ensemble mobile tgφ= f=0,18;
- $ightharpoonup \overrightarrow{Ft}$: représente la force tangentielle appliquée par la crémaillère sur le pignon pour déplacer l'ensemble mobile horizontalement suivant l'axe \mathbf{X} ;
- $ightharpoonup \overline{Rx}$: représente la composante horizontale suivant l'axe \mathbf{X} de la réaction du rail de guidage sur l'ensemble mobile. Si le chariot est en équilibre dynamique, cette action mécanique à pour expression $\mathbf{R}_x = \mathbf{M}$. \mathbf{g} . \mathbf{f} ;
- > Rz : représente la composante verticale suivant l'axe Z de La réaction du rail de guidage sur l'ensemble mobile.

Données pour la tâche 2.2

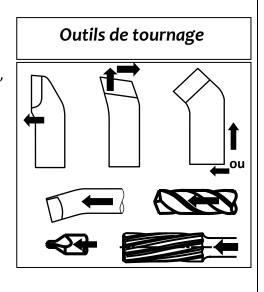
✓ Agencement de la chaîne de transmission de puissance mécanique dans le bloc X :

√ Tableau pour le choix du moteur électrique de translation suivant X :

Type du moteur	FLSPX 80 L	FLSPX 90 L	FLSPX 100 LK	FLSPX 112 MG	FLSPX 132 SM
Puissance Pm (en kW)	0,75	1,8	2,2	4	5,5
fréquence de rotation (en tr/min)	1425	1438	1457	1462	1467
Couple (en N.m)	5	12,3	14,41	27,5	37

Données pour la tâche 2.3

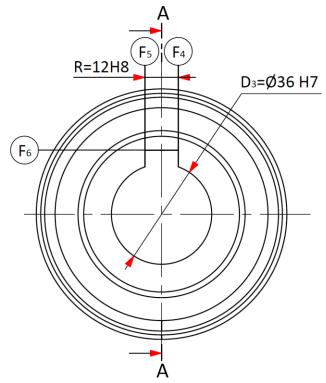
- L'effort tangentiel Ft=2551 N appliqué par la crémaillère sur le pignon 41 de diamètre primitif d=84 mm;
- L'angle unitaire de torsion ne doit pas dépasser $heta_{lim}=0$, $5~^{\circ}/m~=rac{0.5.\pi}{180}~rad/m$;
- Les singularités de formes au niveau de l'arbre provoquent une concentration de contraintes Kt = 3,85;
- On adopte pour cette construction un coefficient de sécurité s = 5;
- R_{eg} = 0,7xR_e; (R_e: résistance élastique à la traction et R_{eg}: résistance élastique au glissement);
- Le module de coulomb G = 8.10⁴ N/mm².


Nuances usuelles	38 Cr 2	46 Cr 2	41 Cr 4	20 Ni Cr 2	20 Ni Cr Mo 7
Re (en N/mm²)	350	400	560	700	800

Données pour la Situation d'évaluation 3

Les données de fabrication sont :

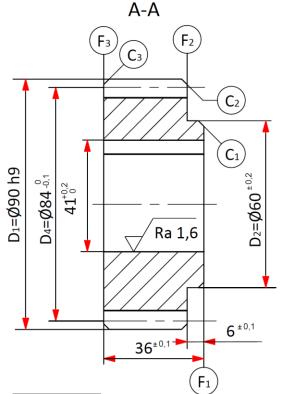
- Programme de fabrication : 100 pièces par mois pendant 3 ans ;
- Parc machines-outils: Tour parallèle, fraiseuse universelle, perceuse, rectifieuse.
- Avant-projet d'étude de fabrication :


N° Phase	Désignation	Surfaces concernées
10	Contrôle de brut	Etiré Ø95 L= 41
20	Tournage	F ₁ ; (D ₂ , F ₂); D ₃ ; C ₁
30	Tournage	F ₃ ; D ₁ , C ₃ et C ₂
40	Electro-érosion	R : Rainure de clavette
50	Taillage des dentures	D _{4eb,1/2f}
60	Traitement thermique	D ₄
70	Finition des dentures	D_{4f}
80	Contrôle final	

فحة	الص
	17
17	

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2019 - الموضوع - مادة: علوم المهندس - شعبة العلوم والتكنولوجيات مسلك العلوم والتكنولوجيات الميكانيكية

> Dessin de définition du pignon 41.


Matière: C 40

 $C_1 = C_2 = C_3 = 2x45^{\circ}$

D₃=Ø36 H7= Ø36 $^{+0.025}_{0}$

D₁=Ø90 h9= Ø90 -0,087

 $R=12H8=12^{+0.027}$

Dз	0	0,05		
F ₃	F	0,05	D ₃	
F ₃	//	0,05	F ₁	
R	ψ	0,08	D ₃	
D ₄	0	Ø 0,02		Dз

• Données pour la tâche 3.2 :

Coefficients de Taylor			
n	Cv		
-7	10 ¹²		

La vitesse de	L'avance	Le diamètre	Longueur de
Coupe Vc ébauche	f ébauche	brut	coupe Lc
32 m/min	0.4 mm/tr	Ø95 mm	47.5 mm

• Données pour la tâche 3.5 :

- Dimensions du brut : Etiré Ø95 ; L = 41 ;
- Dresser F1:
 - ✓ Finition directe;
 - ✓ La profondeur de passe a = 2 mm.
- Conditions de coupe :
 - √ Vc (finition) = 188 m/min;
 - \checkmark f = 0.1 mm/tr;
 - ✓ N_{Max} = 3000 tr/min.

