4	ء: 1 على	الصفحة	الوريا	الوطني الموحد للبكا المسالك الدولية الدورة العادية 2022		ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	المملكة المغرب وزارة التربية الوك والتعليم الأولو والر
SSS	SSSSSSSSSS	SSSSS-SS	*I	- عناصر الإجابة -	NR 27F		9
5	المعامل	3h	مدة الإنجاز	الأرض ـ خيار فرنسية	يزياء والكيمياء ملك علوم الحياة و	الف شعبة العلوم التجريبية: مس	المادة الشعبة والمسلك

Chimie (7 points)

Exc	ercice	Question	Éléments de réponse	Barème	Référence de la question dans le cadre de référence
		1.	$H_2 O_{2(aq)} / H_2 O_{(l)}$; $I_{2(aq)} / I_{(aq)}^-$	0,5	■ Écrire l'équation de la réaction modélisant une transformation d'oxydoréduction et identifier les deux couples intervenants.
	Partie 1	2.1.	Concentration des réactifs et température	2x0,25	Connaitre les facteurs cinétiques : concentration des réactifs et température.
ts)			Effets sur la vitesse volumique de la réaction	0,25	Connaitre l'influence de la concentration des réactifs et de la température sur la vitesse volumique de réaction.
7 points)		2.2.	Aboutir à $x_{f1} = 10^{-3} mol$; $x_{f2} = 2.10^{-3} mol$	0,5+0,25	■ Dresser le tableau d'avancement d'une réaction et l'exploiter.
Chimie (7		2.3.	Courbe 1 \longrightarrow Expérience (1) Courbe 2 \longrightarrow Expérience (3) + Justification Courbe 3 \longrightarrow Expérience (2)	0,5	Exploiter les différentes courbes d'évolution de la quantité de matière d'une espèce chimique, ou de sa concentration, ou de l'avancement de la réaction.
		3.1.	Aboutir à : $v \approx 4.10^{-3} \ mol.L^{-1}.h^{-1}$	0,5	■ Déterminer graphiquement la valeur de la vitesse volumique de réaction.
		2.2	Définition du temps de demi- réaction	0,25	■ Définir le temps de demi-réaction $t_{1/2}$.
		3.2.	$t_{1/2} = 4,4 h$	0,25	■ Déterminer le temps de demi-réaction graphiquement ou en exploitant des résultats expérimentaux.

			الصفحة : 2 على 4	NR 27F	2 – عناصر الإجابة ة والأرض - خيار فرنسية	ورة العادية 022 : مسلك علوم الحيا	الامتحان الوطني الموحد للبكالوريا - الدر مادة: الفيزياء والكيمياء - شعبة العلوم التجريبية:	
		1.1.	$C_4H_9CO_2H_{(aq)} + H_2O_{(l)} \rightleftharpoons C_4H_9CO_{2(aq)}^- + H_3O_{(aq)}^+$			0,5	■ Écrire l'équation de la réaction modélisant une transformation acido-basique et identifier les deux couples intervenants.	
		1.2.	Aboutir à : $\tau \approx 4.10$	- 2		0,25	■ Définir le taux d'avancement final d'une réaction et le	
	Partie 2	1.2.	au < 1 : Transformation limitée			0,25	déterminer à partir de données expérimentales.	
		1.3.	Aboutir à : $Q_{r,éq} = \frac{Q}{Q_{r,eq}}$	$C_A \cdot \tau^2$		0,5	■ Donner et exploiter l'expression littérale du quotient de réaction Q_r à partir de l'équation de la réaction.	
			1-1				Savoir que le quotient de réaction $Q_{r,\ell q}$, associée à	
		1.4.	Aboutir à : $pK_A \approx 4,78$			0,5	l'équation de la réaction, à l'état d'équilibre d'un système, prend une valeur, indépendante des concentrations, nommée constante d'équilibre <i>K</i> .	
							• Connaitre la relation $pK_A = -\log K_A$.	
		2.1.	$C_4H_9CO_2H_{(aq)} + HC$	$D_{(aq)}^- \to C_4 I$	$H_9CO_{2(aq)}^- + H_2O_{(l)}$	0,5	■ Écrire l'équation de réaction de dosage (en utilisant une seule flèche).	
		2.2.	Aboutir à : $C_1 = 1,8$	$8.10^{-2} \ mol.$	L^{-1}	0,5		
		2.3.	$n_1 = 1, 8.10^{-2} mol$			0,25	Exploiter la courbe ou les résultats du dosage.	
		2.4.	<i>d</i> ≈ 99 %			0,25		

Physique (13 points)

Exercice		Question	Éléments de réponse	Barème	Référence de la question dans le cadre de référence
		1.	$T = 10^{-2} \ s \qquad ; \qquad \lambda = 0.1 m$	2x0,25	■ Reconnaitre une onde progressive périodique et sa période.
ts)	1	2.	Aboutir à : $v = 10 m.s^{-1}$	0,5	• Connaitre et exploiter la relation $\lambda = v.T$.
Exercice 1 (3,5 points)	Partie	3.	Aboutir à : $t_1 = 1, 5.10^{-2} s$; $d = 0, 15 m$	0,5+0,25	Exploiter des documents expérimentaux et des données pour déterminer : * une distance ou une longueur d'onde ; * un retard temporel ; * une célérité.

			الصفحة : 3 على 4	NR 27F	202 – عناصر الإجابة حياة والأرض - خيار فرنسية	دورة العادية 2 ه: مسلك علوم ال	الامتحان الوطني الموحد للبكالوريا - ال مادة: الفيزياء والكيمياء - شعبة العلوم التجريبيا
	ie 2	1.	Diffraction ;	Aspect	ondulatoire de la lumière 2x0,25 cas des ondes lumineuses. Savoir que la lumière a un aspect ondulatoire, en se ba		 Exploiter un document ou une figure de diffraction dans le cas des ondes lumineuses. Savoir que la lumière a un aspect ondulatoire, en se basant sur le phénomène de diffraction.
	Part	2.	В			0,5	Exploiter un document ou une figure de diffraction dans le cas des ondes lumineuses.
		3.	Aboutir à : $a_f = 1,5$	$5.10^{-4} m$		0,75	■ Connaitre et exploiter la relation $\theta = \lambda / a$ et connaitre

l'unité et la signification de θ et λ .

Exercice	Question	Éléments de réponse	Barème	Référence de la question dans le cadre de référence
	1.1.	Équation différentielle	0,5	■ Établir l'équation différentielle et vérifier sa solution lorsque le dipôle RC est soumis à un échelon de tension.
nts)	1.2.	D	0,5	■ Déterminer l'expression de la tension $u_C(t)$ aux bornes du condensateur lorsque le dipôle RC est soumis à un échelon de tension, et en déduire l'expression de l'intensité du courant dans le circuit et l'expression de la charge du condensateur.
(5,5 points)	1.3.a.	$\tau = 0.5 \ s$	0,25	Exploiter des documents expérimentaux pour déterminer la constante de temps et la durée de charge.
	1.3.b.	$I_{\text{max}} = 0.8 \text{ mA}$; $\mathscr{E}_{\text{emax}} = 2 \text{ mJ}$	2x0,25	Connaitre et exploiter l'expression de la constante de temps. Déterminer l'expression de la tension $u_C(t)$ aux bornes du
Exercice 2	1.3.c.	Vérification ; $E=10 V$	0,5+0,25	condensateur lorsque le dipôle RC est soumis à un échelon de tension, et en déduire l'expression de l'intensité du
E E	1.3.d.	$R = 12,5 \ k\Omega$	0,5	courant dans le circuit et l'expression de la charge du condensateur.
	1.3.e.	Vérification de la valeur de $\it C$	0,5	Connaitre et exploiter l'expression de l'énergie électrique emmagasinée dans un condensateur.
	2.1.	Courbe (1) + Justification		 Connaitre et exploiter les diagrammes d'énergie. Connaitre et exploiter l'expression de l'énergie électrique emmagasinée dans un condensateur.

		الصفحة : 4 على 4	NR 27F	202 – عناصر الإجابة لحياة والأرض - خيار فرنسية	دورة العادية 2 ة: مسلك علوم ال	الامتحان الوطني الموحد للبكالوريا - الم مادة: الفيزياء والكيمياء - شعبة العلوم التجريبي	
	2.2.	Explication du point	de vue én	ergétique	0,5	Expliquer, du point de vue énergétique, les trois régi	mes.
	2.3.	Méthode; $\mathcal{E} = 2 mJ$			0,25	■ Connaitre et exploiter l'expression de l'énergie totale du circuit.	
	2.4.	Aboutir à : $T_0 = 2 \text{ m}$	$\dot{a}: T_0 = 2 ms$			Connaitre et exploiter les diagrammes d'énergie.	
	2.5.	Aboutir à : $L=2,5$	nН		0,5	Connaitre et exploiter l'expression de la période pro	pre.

Exercice	Question	Éléments de réponse	Barème	Référence de la question dans le cadre de référence
Exercice 3 (4 points)	1.	Méthode Vérification de la valeur de a_G		 Appliquer la deuxième loi de newton pour établir l'équation différentielle du mouvement du centre d'inertie
	2.			d'un solide sur un plan horizontal ou incliné et déterminer
	3.	Aboutir à : $v_0 \approx 0.12 m.s^{-1}$	0,5	les grandeurs dynamiques et cinématiques caractéristiques du mouvement.
	4.	Aboutir à : $d = 1.8 m$	0,75	Connaitre et exploiter les caractéristiques du mouvement rectiligne uniformément varié et ses équations horaires.
	5.	Aboutir à : $F \approx 1.6 N$	0,5	 Appliquer la deuxième loi de newton pour établir l'équation différentielle du mouvement du centre d'inertie
	6.	6. Aboutir à $R \approx 5,7 N$		d'un solide sur un plan horizontal ou incliné et déterminer les grandeurs dynamiques et cinématiques caractéristiques du mouvement.