

érie d'exercices N°5

_ Energie thermique - Echange thermique _

Exercice 1:

On admet que dans un calorimètre, seul le vase intérieur (masse $m_1 = 300g$, capacité thermique massique $C_1=0,38.kJ.kg^{-1}K^{-1}$) et l'agitateur (masse $m_2 = 50$ g, capacité thermique massique $C_2=0,90.kJ.kg^{-1}K^{-1}$) sont susceptibles de participer aux échanges thermiques avec le contenu de l'appareil.

- 1) Calculer la capacité thermique μ du calorimètre.
- 2) Ce dernier contient 400 g d'éthanol à la température $t_1 = 17.5$ °C; on y verse 200 g d'eau à la température $t_2 = 24.7$ °C et on note la température lorsque l'équilibre thermique est réalisé, soit te=20,6°C. En déduire la valeur de la capacité thermique massique C de l'éthanol.

Donnée : Capacité thermique massique ce de l'eau : 4,19 kJ.kg⁻¹K⁻¹.

Exercice 2:

Dans un calorimètre en cuivre de masse $m_c = 100$ g et qui contient une masse d'eau $m_e = 200$ g à t_e =4°C, on introduit une masse $m_1 = 300$ g de cuivre à $t_1 = -20$ °C.

- 1) On agite pour atteindre l'équilibre thermique : calculer la température finale t_f.
- 2) Montrer que si le cuivre introduit est à la température $t_2 = -50$ °C, une partie de l'eau congèle. Calculer la masse de glace formée mg.

Données : - Chaleurs massiques de cuivre : 395 J.kg⁻¹.K⁻¹

- Chaleur latente de fusion de la glace : 330 kJ/kg

Exercice 3:

Un calorimètre de capacité thermique $\mu=180~J.K^{-1}$ contient un mélange en équilibre de 100 g d'eau et de 5 g de glace broyée. Un bloc de plomb de masse m=220 g, préalablement porté à la température t=97,0°C, est introduit rapidement dans le vase calorimétrique. On attend l'équilibre thermique et on note la température : te = 1,7°C.

- 1) Calculer la valeur de la capacité thermique massique du plomb.
- 2) Quelle énergie thermique minimale faut-il fournir pour fondre un lingot de plomb de masse 20 kg pris à la température initiale de 20°C ?
- Capacité thermique massique de l'eau : $Ce = 4,19 \text{ kJ.kg}^{-1}\text{K}^{-1}$
- Chaleur latente de fusion de la glace à $0^{\circ}C$: $L_f = 334 \; kJ.kg^{-1}$
- Température de fusion du plomb : $t_{f\,(Pb)}=327^{\circ}C$;
- Chaleur latente de fusion du plomb à 327°C : $L_{f \text{ (Pb)}} = 22,6 \text{ kJ.kg}^{-1}$

Série d'exercices N°5

_ Energie thermique - Echange thermique _

Exercice 4:

Dans un calorimètre de capacité calorifique $C_{cal}=125~J/K$ et contenant une masse $m_1=200~g$ d'eau à $t_1{=}30^{\circ}C$, on introduit une masse m_g de glaçons à $t_g=0^{\circ}C$. La température finale vaut $t_f=5^{\circ}C$. Calculer m_g .

Exercice 5:

Un calorimètre renferme 200 g d'eau à la température t_1 =14,5°C. On y introduit un cylindre d'aluminium de masse M=80 g préalablement porté dans une étuve à la température $t_2=86,8$ °C. La température d'équilibre se fixe à te = 20,0°C.

On recommence l'expérience en plaçant, cette fois, 150 g d'eau dans le calorimètre à la température t'₁=15,8°C; le même cylindre d'aluminium, désormais, porté à la température t'₂= 95,5°C est réintroduit dans le calorimètre ; le nouvel équilibre est caractérisé par la température t'₃=22,1°C. En déduire :

- 1) La capacité thermique massique C de l'aluminium;
- 2) La capacité thermique µ du calorimètre.
- 3) Quelle quantité de chaleur minimale faut-il mettre en œuvre pour fondre une tonne d'aluminium prise à la température initiale de 15°C ?

On donne : - Capacité thermique massique de l'eau : Ce = 4,19 kJ.kg⁻¹K⁻¹

- Température de fusion de l'aluminium $t_{f(Al)} = 660$ °C.
- Chaleur latente de fusion de l'aluminium à 660°C : L_{f (Al)} = 330 kJ.kg⁻¹

Exercice 6:

Pour déterminer la capacité thermique massique d'un alcool organique, on le chauffe légèrement, puis on en introduit une masse connue dans un calorimètre : m_1 = 220g.

Après quelques instants, on note la température : $t_1 = 28,2^{\circ}C$. On ajoute alors une masse $m_2 = 200$ g du même alcool, mais à la température $t_2=16,4^{\circ}C$, puis, à l'aide d'une résistance électrique préalablement installée, on chauffe le liquide calorimétrique jusqu'à ce que la température redevienne égale à la température initiale t_1 . La quantité de chaleur apportée par la résistance a pour valeur Q = 5,43 kJ.

- 1) En déduire la capacité thermique massique C de l'alcool étudié.
- 2) Lorsque la température atteint 28,2°C, on ajoute 120 g d'eau à la température $t_3 = 15,0$ °C. On note la température te = 24,4°C à l'équilibre thermique.

Déduire de cette expérience :

- a) La valeur de la capacité thermique μ du calorimètre ;
- **b**) La température d'équilibre t obtenue juste après le mélange des 220 g d'alcool à $t_1 = 28,2$ °C et des 200 g du même alcool à $t_2 = 16,4$ °C.

On donne : Capacité thermique massique de l'eau : Ce = 4,19 kJ.kg⁻¹K⁻¹

Série d'exercices N°5

_ Energie thermique - Echange thermique _

Exercice 7:

Un calorimètre, de capacité thermique $\mu=120~J.K^{-1}$, contient 250g d'eau et 40 g de glace en équilibre thermique.

- 1) Quelle est sa température ?
- 2) On chauffe lentement l'ensemble avec une résistance électrique. La température de l'eau du calorimètre atteint 28,8°C lorsque la quantité de chaleur dissipée par la résistance est égale à 51530 J.

Déduire de cette expérience la valeur de la chaleur latente de fusion de la glace L_f.

On donne : Capacité thermique massique de l'eau : Ce = 4,19 kJ.kg⁻¹K⁻¹

Exercice 8:

Un calorimètre contient une masse m_1 =250g d'eau. La température initiale de l'ensemble est t_1 =18°C. On ajoute une masse m_2 =300g d'eau à la température t_2 =80°C.

- 1) Quelle serait la température d'équilibre thermique te de l'ensemble si la capacité thermique du calorimètre μ et de ses accessoires était négligeable ?
- 2) On mesure en fait une température d'équilibre thermique te=50°C. Déterminer la capacité thermique μ du calorimètre et de ses accessoires.

Données : Chaleur massique de l'eau : Ce = 4,19 kJ.kg⁻¹K⁻¹

Masse volumique de l'eau : $\rho_{eau} = 1000 \text{ kg.m}^{-3}$.

Exercice 9:

On désire obtenir un bain d'eau tiède à la température te=37°C, d'un volume total V=250 litres, en mélangeant un volume V_1 d'eau chaude à la température initiale t_1 =70°C et un volume V_2 d'eau froide à la température initiale t_2 =15°C.

Déterminer V₁ et V₂ en supposant négligeables toutes les fuites thermiques lors du mélange.

Données : Chaleur massique de l'eau : Ce=4185 J.kg⁻¹.K⁻¹

Masse volumique de l'eau : $\rho_{eau} = 1000 \text{ kg.m}^{-3}$.

Exercice 10:

On veut refroidir un verre de jus de fruit pris à 30 °C. La capacité calorifique du verre et du jus est de μ =550 J.K⁻¹. On introduit alors une certaine masse m de glace à 0°C. On veut que la température finale de l'ensemble soit de te = 10°C.

On admet qu'il n'y a échange de chaleur qu'entre la glace et le verre de jus de fruit. Calculer la masse de glace nécessaire.

_ Energie thermique – Echange thermique _

Exercice 11:

Un morceau de fer de masse m_1 =500g est sorti d'un congélateur à la température t_1 =-30°C. Il est plongé dans un calorimètre, de capacité thermique négligeable, contenant une masse m_2 =200g d'eau à la température initiale t_2 =4°C

Déterminer l'état final d'équilibre du système (température finale, masse des différents corps présents dans le calorimètre).

Données:

- Chaleur massique de l'eau : C_e = 4185 J.kg⁻¹.K⁻¹
- Chaleur massique de la glace: C_g = 2090 J.kg⁻¹.K⁻¹
- Chaleur massique du fer: C_{Fe} = 460 J.kg⁻¹.K⁻¹
- Chaleur latente de fusion de la glace: L_f=3,34.10⁵ J.kg⁻¹

Exercice 12:

Un calorimètre contient 100 g d'eau à 18°C. On y verse 80 g d'eau à 60°C.

- 1) Quelle serait la température d'équilibre si la capacité thermique du calorimètre et de ces accessoires était négligeable ?
- 2) La température d'équilibre est en fait 35,9°C. En déduire la capacité thermique du calorimètre et de ses accessoires.
- 3) On considère de nouveau le calorimètre qui contient 100 g d'eau à 18°C. On y plonge un morceau de cuivre de masse 20 g initialement placé dans de l'eau en ébullition. La température d'équilibre s'établit à 19,4°C. Calculer la capacité thermique massique du cuivre.
- **4**) On considère encore le même calorimètre contenant 100 g d'eau à 18°C. On y plonge maintenant un morceau d'aluminium de masse 30,2 g à la température de 100°C et de capacité thermique massique 920 J.kg⁻¹K⁻¹.

Déterminer la température d'équilibre.

- 5) L'état initial restant le même : le calorimètre contenant 100 g d'eau à 18°C, on y introduit un glaçon de masse 25 g à 0°C. Calculer la température d'équilibre.
- 6) L'état initial est encore : le calorimètre contenant 100 g d'eau à 18°C, on y introduit un glaçon de masse 25g provenant d'un congélateur à la température de -18°C. Quelle est la température d'équilibre ?

Données:

- Capacité thermique massique de l'eau : Ce = 4,19 kJ.kg⁻¹K⁻¹.
- Capacité thermique massique de la glace : $Cg = 2,10.103 \text{ J.kg}^{-1}.\text{K}^{-1}$
- Chaleur latente de fusion de la glace à 0°C : L_f = 3,34.105 J.kg⁻¹

_ Energie thermique - Echange thermique _

Exercice 13:

Un calorimètre contient de l'eau à la température $t_1 = 18,3^{\circ}C$; sa capacité thermique totale a pour valeur μ =1350 J.K⁻¹.

On y introduit un bloc de glace, de masse m=42 g, prélevé dans le compartiment surgélation d'un réfrigérateur à la température $t_2=-25,5$ °C. Il y a fusion complète de la glace et la température d'équilibre est t=5,6°C.

On recommence l'expérience (même calorimètre, même quantité d'eau initiale, même température), mais on introduit cette fois un glaçon de masse m'=35 g, à la température de 0°C. La nouvelle température est t'=8,8°C.

Déduire des deux expériences précédentes :

- 1) La chaleur latente de fusion L_f de la glace ;
- 2) La capacité thermique massique Cs de la glace.
- 3) On introduit un nouveau glaçon, de masse 43 g, à la température -25,5°C, dans l'eau du calorimètre à la température t' issue de la dernière expérience.
- a) Quelle est la température atteinte à l'équilibre thermique ?
- **b)** Reste-t-il de la glace ? Si oui, quelle est sa masse ?

Donnée : Capacité thermique massique de l'eau : Ce = 4,19 kJ.kg⁻¹.K⁻¹

Exercice 14:

On place 200 mL de solution d'acide chlorhydrique de concentration 0,4 mol/L dans un vase de Dewar de capacité thermique $\mu = 150 \text{ J.K}^{-1}$.

Une solution aqueuse d'hydroxyde de sodium, de concentration 1 mol/L, est versée progressivement dans la solution chlorhydrique, tandis qu'on relève, après chaque addition, la température dans le calorimètre. Initialement, les solutions d'acide chlorhydrique et d'hydroxyde de sodium sont à la même température $t_1 = 16,1$ °C. La température du calorimètre s'élève régulièrement jusqu'à $t_2 = 19,5$ °C, puis décroît lentement.

- 1) Ecrire l'équation bilan de la réaction qui se produit dans le calorimètre et interpréter qualitativement les phénomènes physiques observés. Pour quel volume V de solution d'hydroxyde de sodium versé observe-t-on la température maximale t_2 ?
- 2) En déduire la chaleur de la réaction entre une mole d'ions H₃O⁺ et une mole d'ions OH⁻.
- 3) Quelle est la température t₃ lorsque l'on a versé 150 mL de solution d'hydroxyde de sodium?

Données:

- Les capacités thermiques massiques des solutions d'acide chlorhydrique et d'hydroxyde de sodium sont égales : $C = 4.2 \text{ kJ.kg}^{-1}\text{K}^{-1}$
- Les masses volumiques de ces solutions sont égales : $\rho = 103 \ kg/m^3$

