Lycée oued Eddahab	Devoir surveillé n°3	1ère session
Niveau: 1 er Bac B.I.O.F	Physique chimie	2016-2017
Nom:	Prénom :	N°:

Nom:		Prenom:	N*:
	Un point p	oour la représentation de la c	oupie
Exercica Partie 1 Cocher la		s)	
☐ A : se ☐ B : sor		ide dans l'eau, les ions : ique et restent immobiles. a solution.	
	d'hydrogène <i>H — Br</i> es argée olaire	up plus électronégatif que l'atome d st :	'hydrogène. La molécule de
distillée, 1	it une masse $m = 8,07$ pour préparer une soluti	g de chlorure de cuivre II ($CuCl_{2}$ (sion (S_1) de volume $V_1 = 200mL$ et ; $M(Cl) = 35,5 \ g. mol^{-1}$	
1-1- Ecrin 1-2- Calc	re l'équation de dissolut uler la concentration C_1	le chlorure $Cl_{(aq)}^-$ et des ions de cu tion de chlorure de cuivre II dans l'é de la solution (S_1) . $(1,5pts)$ fective des ions dans la solution (S_1)	eau. (1pt)
$(Na^+_{(aq)}$		récédente, une solution (S_2) de chlo ion $C_2 = 0.25 mol. L^{-1}$ et de volum homogène (S) .	
2-2- Calc	uler la concentration effuler la concentration eff	tion de chlorure de sodium ($NaCl_{(s)}$ fective des ions dans la solution (S_2) fective de tous les ions qui se trouve).(1pt)

Exercice 2 : (10pts) Partie 1
Cocher la bonne répo
1- Le théorème de l'é ☐ A : n'est applicab ☐ B : s'applique seu ☐ C : peut être appli

onse : (3pts)

- le que dans un référentiel galiléen
- lement aux systèmes en mouvement de translation
- qué à un système en mouvement de rotation.
- 2- L'énergie cinétique E_C d'un corps solide de moment d'inertie J_{Δ} , en mouvement de rotation autour d'un axe fixe (Δ), avec une vitesse angulaire ω est :
- $\Box A: E_c = \frac{1}{2} J_{\Delta} \omega$ $\Box B: E_c = \frac{1}{2} J_{\Delta} \omega^2$
- \square C: $E_C = I_{\Lambda}\omega^2$
- 3- L'énergie cinétique d'un corps solide en rotation uniforme autour d'un axe fixe, est
- A : constante
- B: nulle
- C : variable

Partie 2

On considère un disque homoène (D) de masse m = 500 g et de rayon r = 10 cm, est animé d'un mouvement de rotation uniforme autour d'un axe Δ . Sa vitesse angulaire $\omega = 600 \ tr/min$.

Le de moment d'inertie J_{Δ} par rapport à l'axe (Δ) $J_{\Delta} = \frac{1}{2} m. r^2$

- 1- Calculer le moment d'inertie J_{Δ} . (1pt)
- 2- Exprimer ω en rad/s. Déduire l'énergie cinétique E_C de disque (D). (1,5pts)
- 3- Pour entretenir ce mouvement, un moteur exerce un couple de moment constante M_m , dont la puissance P = 1 kW.

Calculer M_m le moment du couple moteur. (1pt)

- 4- On coupe l'alimentation du moteur, le disque effectue 3 tours avant de s'immobiliser.
- 4-1- Déterminer le travail des forces de frottement. (1,5ps)
- 4-2- Calculer le moment, supposé constant, des forces de frottement. (1pts)

Fin du sujet